GABAergic and pyramidal neurons of deep cortical layers directly receive and differently integrate callosal input.

نویسندگان

  • Theofanis Karayannis
  • Icnelia Huerta-Ocampo
  • Marco Capogna
چکیده

We studied the involvement of deep cortical layer neurons in processing callosal information in the rat. We observed with electron microscopy that both parvalbumin (PV)-labeled profiles and unlabeled dendritic spines of deep cortical layer neurons receive synapses from the contralateral hemisphere. Stimulation of callosal fibers elicited monosynaptic excitatory postsynaptic currents in both layer VI pyramidal neurons and gamma-aminobutyric acidergic (GABAergic) interneurons immunopositive for the vesicular GABA transporter and PV. Pyramidal cells had intrinsic electrophysiological properties and synaptic responses with slow kinetics and a robust N-metyhl-D-aspartate (NMDA) component. In contrast, GABAergic interneurons had intrinsic membrane properties and synaptic responses with faster kinetics and a less pronounced NMDA component. Consistent with these results, the temporal integration of callosal input was effective over a significantly longer time window in pyramidal neurons compared with GABAergic interneurons. Interestingly, callosal stimulation did not evoke feedforward inhibition in all GABAergic interneurons and in the majority of pyramidal neurons tested. Furthermore, retrogradely labeled layer VI pyramidal neurons of the contralateral cortex responded monosynaptically to callosal stimulation, suggesting interconnectivity between callosally projecting neurons. The data show that pyramidal neurons and GABAergic interneurons of deep cortical layers receive interhemispheric information directly and have properties supporting their distinct roles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

POm Thalamocortical Input Drives Layer-Specific Microcircuits in Somatosensory Cortex.

Higher-order thalamic nuclei, such as the posterior medial nucleus (POm) in the somatosensory system or the pulvinar in the visual system, densely innervate the cortex and can influence perception and plasticity. To systematically evaluate how higher-order thalamic nuclei can drive cortical circuits, we investigated cell-type selective responses to POm stimulation in mouse primary somatosensory...

متن کامل

Layer-specific input to distinct cell types in layer 6 of monkey primary visual cortex.

Layer 6 of monkey V1 contains a physiologically and anatomically diverse population of excitatory pyramidal neurons. Distinctive arborization patterns of axons and dendrites within the functionally specialized cortical layers define eight types of layer 6 pyramidal neurons and suggest unique information processing roles for each cell type. To address how input sources contribute to cellular fun...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Pyramidal Neurons in Prefrontal Cortex Receive Subtype-Specific Forms of Excitation and Inhibition

Layer 5 pyramidal neurons comprise at least two subtypes: thick-tufted, subcortically projecting type A neurons, with prominent h-current, and thin-tufted, callosally projecting type B neurons, which lack prominent h-current. Using optogenetic stimulation, we find that these subtypes receive distinct forms of input that could subserve divergent functions. Repeatedly stimulating callosal inputs ...

متن کامل

Distinct GABAergic targets of feedforward and feedback connections between lower and higher areas of rat visual cortex.

Processing of visual information is performed in different cortical areas that are interconnected by feedforward (FF) and feedback (FB) pathways. Although FF and FB inputs are excitatory, their influences on pyramidal neurons also depend on the outputs of GABAergic neurons, which receive FF and FB inputs. Rat visual cortex contains at least three different families of GABAergic neurons that exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 17 5  شماره 

صفحات  -

تاریخ انتشار 2007